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The damping rate of two-dimensional massless Dirac fermions exhibit non-Fermi-liquid behavior, ��1/2, due
to gauge field at zero temperature and zero chemical potential. We study the fate of this behavior at finite
chemical potential. We first calculate explicitly the temporal and spatial components of vacuum polarization
functions. The analytical expressions imply that the temporal component of gauge field develops a static
screening length at finite chemical potential while the transverse component remains long-ranged owing to
gauge invariance. We then calculate the fermion damping rate and show that the temporal gauge field leads to
normal Fermi-liquid behavior but the transverse gauge field leads to non-Fermi-liquid behavior ��2/3 at zero
temperature. This energy dependence is more regular than ��1/2 and does not change as chemical potential
varies.
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I. INTRODUCTION

The damping rate of fermions due to interaction with
gauge fields is a physical quantity of broad interests. Study-
ing this quantity can help us to judge whether an interacting
fermion system displays non-Fermi-liquid behavior or not.
According to Landau, for any normal Fermi liquid to be
stable, the fermion excitations must have a sufficiently long
lifetime, which means that the fermion damping rate should
vanish faster than energy � does as �→0. At the low-energy
regime, the fermion damping rate can be written in the form
Im ������z. The system with exponent z�1 is a normal
Fermi liquid while system with z�1 corresponds to a non-
Fermi liquid. In conventional metals, the Coulomb interac-
tion between electrons is always statically screened and can
only lead to normal Fermi-liquid behavior. Since the work of
Holstein et al.,1 it has been known that the unscreened gauge

field can give rise to non-Fermi-liquid behavior. The unusual,
non-Fermi-liquidlike, fermion damping rate caused by gauge
field has attracted great attention in the past 20 years because
an emergent gauge field is found to play important roles in a
number of strongly correlated electron systems.2–8 In particle
physics, this problem has also been discussed extensively in
various gauge theories, including four-dimensional QCD
�Ref. 9� and four-dimensional QED.10,11

Here we are particularly interested in the unusual proper-
ties of massless Dirac fermions. In some planar correlated
electron systems, including d-wave high-temperature
superconductor8 and graphene,12 the valence band and con-
duction band touch only at discrete Dirac points. This is
illustrated in Fig. 1�a�. The states in the lower valence band
are fully occupied while those in the upper conduction band
are fully empty. The low-energy fermions excited from the
lower band have a linear spectrum and hence can be de-

FIG. 1. �Color online� �a� The half-filling state with lower band being fully occupied and upper band fully empty. �b� At finite chemical
potential �, the Fermi surface is finite.
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scribed by massless Dirac fermions, which satisfy the rela-
tivistic Dirac equation.8,12 The interaction of massless Dirac
fermions with an abelian gauge field in two spatial dimen-
sions defines the three-dimensional quantum electrodynam-
ics �QED3�. This field theory is usually studied by particle
physicists as a toy model of QCD4 since it is known to ex-
hibit dynamical chiral symmetry breaking13 and
confinement.14 In condensed matter physics, with proper
modification, it serves as an effective low-energy theory of
high-temperature superconductors15–18 and some spin-1/2
Kagome spin liquids.19 In the realistic applications, chiral
symmetry breaking and confinement in QED3 correspond to
the long-range Neel order in two-dimensional quantum
Heisenberg antiferromagnet.18

Recently, we studied the damping rate of massless Dirac
fermions due to gauge field in QED3 in the absence of chiral
symmetry breaking and confinement.20 It diverges at both
zero and finite temperatures when it is calculated using the
straightforward perturbative expansion approach. Once the
fermion damping effect and the dynamical screening effect
of gauge field are self-consistently coupled, the fermion
damping rate is then well-defined and behaves as Im ����
��1/2 at zero temperature.20 This damping rate vanishes
slower than � does in the �→0 limit and thus displays non-
Fermi-liquid behavior.

This result was obtained in the so-called half-filling
ground state depicted in Fig. 1�a�. In realistic condensed mat-
ter systems, the fermion density already can be continuously
turned, either by chemical doping8 or by adjusting a bias
voltage.12 When the fermion density grows from the Dirac
point, a small but finite Fermi surface will emerge, as shown
in Fig. 1�b�. To describe this process, the commonly used
strategy is to introduce a chemical potential �, which defines
the energy difference between the new Fermi surface and the
Dirac point. The systems at zero and finite � may have quite
different properties. Indeed, there might be a quantum phase
transition as the chemical potential varies21 with �=0 being
the quantum critical point.

When the fermion density becomes sufficiently large, the
interacting fermion system finally develops a large Fermi
surface with low-energy fermionic excitations satisfying the
nonrelativistic Schrodinger equation. Historically, before the
energy gap of high-temperature cuprate superconductor was
confirmed to have a d-wave symmetry, the fermion-gauge
system with large Fermi surface had been studied
intensively.2,4–8 The damping rate of nonrelativistic fermions
was calculated by various methods, including straightfor-
ward perturbation expansion,4,5 renormalization-group
approach,6 and Eliashberg theory.7 Most of these studies
found that Im ������2/3 at zero temperature. The exponent
in the energy dependence of damping rate is quite different
from that in QED3 of massless Dirac fermions at �=0. The
difference is presumably owing to the difference between a
large Fermi surface and discrete Fermi points.

As � grows from �=0 to a large value, the fermion
damping rate will undergo a crossover from ��1/2 to ��2/3. A
question naturally arises: does the exponent z appearing in �z

vary continuously from 1/2 to 2/3 or change abruptly at some
critical value �c?

In this paper, we study how the fermion damping rate
varies with growing chemical potential � by calculating the

� dependence of fermion self-energy. As usual, the gauge
field is decoupled to longitudinal and transverse components.
From the vacuum polarization functions at finite �, we know
that the longitudinal component becomes short-ranged �mas-
sive� due to static Debye screening effect, but the transverse
part remains long-ranged �massless� because of the gauge
invariance. In this case, the transverse component of gauge
field dominates and should be able to produce non-Fermi-
liquid behaviors. However, with increasing fermion density,
the dynamical screening effect becomes stronger and hence
may lead to less singular behavior than that at small �.

After explicit computation, we found that the transverse
damping rate of Dirac fermions at zero temperature behaves
as Im �T��k���−1/3�k

2/3, while the longitudinal contribution
is Im �L��k�� ��k

2 /��ln��k /��, where �k is the fermion en-
ergy in the on-shell approximation. Thus the total fermion
damping rate is ��−1/3�k

2/3, which is certainly non-Fermi-
liquid behavior. We also considered the fixed momentum ap-
proximation and obtained the same results, i.e., the fermion
damping rate behaves as ��−1/3�2/3 at zero temperature.

These results imply that the fermion damping rate sud-
denly becomes ��2/3 from ��1/2 once the chemical potential
� departs from zero. As � grows, the energy dependence of
fermion damping rate does not change but its coefficient de-
creases. Therefore, although the Dirac fermions are always
not well-defined in the sense of Landau quasiparticle, their
lifetime increases slowly with growing fermion density.

The paper is organized as follows. The Lagrangian and
some relevant quantities are defined In Sec. II. The full ex-
pressions of polarization functions from massless Dirac fer-
mions at finite chemical potential are calculated in Sec. III
and the fermion damping rate is calculated in Sec. IV. We
summarize the results and briefly discuss the physical impli-
cations in Sec. V. The polarization functions at zero tempera-
ture are shown in the Appendix.

II. LAGRANGIAN AND FEYNMAN RULES OF QED3 AT
FINITE CHEMICAL POTENTIAL

We start from the following general Lagrangian of QED3

L = �
i=1

N

�i
†��	 − � − iea0 − i
 · ��− iea���i −

1

4
F2. �1�

This is the general Lagrangian for QED defined in
�2+1�-dimensional space time. As a well-defined relativistic
quantum field theory, there is surely an explicit Maxwell
term for the gauge field. As discussed in the Sec. I, this is a
very interesting and widely studied field theory in the context
of particle physics. When applied to strongly correlated elec-
tron systems, it usually needs to be modified properly. If the
effective QED3 theory is derived by considering the phase
fluctuations in underdoped high temperature superconduct-
ors, then normally the Maxwell term is present.17 However,
if the effective QED3 theory is obtained by the slave-particle
treatment of t-J model, there is no Maxwell term in the La-
grangian and the gauge field can have its dynamics only after
integrating out the matter fields.15,16 We will first consider
the general action with the Maxwell term and briefly discuss
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the case without such term at the end of Sec. IV.
Here, we adopt the two-component representation of

spinor field with 
 being the Pauli matrices. The Dirac fer-
mion flavor N is taken to be large so that we can use the 1 /N
expansion. The theory is defined at finite chemical potential
�. The aim of this paper is to study how the fermion damp-
ing rate depends on �. For simplicity, we take �=c=kB=1
throughout the whole paper.

At finite temperature, the Matsubara propagator of mass-
less Dirac fermion is

G0�i�n,k� =
1

i�n + � − 
 · k
, �2�

where �n= �2n+1��T with n being integer. After analytic
continuation, the retarded propagator is

G0��,k� =
1

� + � − 
 · k + i

. �3�

At finite temperature, the temporal and spatial components of
gauge field decouple and now it is convenient to work in the
Coulomb gauge kiai=0. In the imaginary time formalism, the
propagator for the gauge field can now be written as

D00�i�m,q� =
1

�q�2 + �00�i�m,q�
, �4�

Dij�i�m,q� = �
ij −
qiqj

q2 � 1

�q�2 + �m
2 + ���i�m,q�

, �5�

where �m=2m�T for bosonic modes with m being integers.
The vacuum polarization functions �00��m ,q� and
����m ,q� come from the one-loop bubble diagram of Dirac
fermions to the leading order of 1 /N expansion. In particular,
the polarization function appearing in the spatial component
is given by

���i�m,q� = �ii�i�m,q� −
�m

2

q2 �00�i�m,q� . �6�

The functions �00�i�m ,q� and �ii�i�m ,q� are defined as

�00�i�m,q� = − Ne2T�
i�n

	 d2k

�2��2

�Tr�G0�i�n,k�G0�i�n + i�m,q + k�� , �7�

�ii�i�m,q� = Ne2T�
i�n

	 d2k

�2��2

�Tr�
iG0�i�n,k�
iG0�i�n + i�m,q + k�� .

�8�

When we calculate the fermion damping rate, we need the
real and imaginary parts of the retarded polarization func-
tions. They can be obtained by straightforward computation,
which will be given in the next section.

The fermion damping rate can be calculated by the stan-
dard finite-temperature field theory technique.22 To the low-
est order of 1 /N expansion, the self-energy of Dirac fermion
is given by

��i�n,k� = �L�i�n,k� + �T�i�n,k� , �9�

where

�L�i�n,k� = − e2T�
i�m

1

2
Tr
1 ·	 d2q

�2��2

�G0�i�n + i�m,k + q�D00�i�m,q�� , �10�

�T�i�n,k� = e2T�
i�m

1

2
Tr
1 ·	 d2q

�2��2

�
iG0�i�n + i�m,k + q�
 jDij�i�m,q��
�11�

are the contributions from the longitudinal and transverse
components of the gauge field, respectively. The damping
rate of massless Dirac fermion will be obtained by making
analytic continuation, i�n→�+ i
, as

���,k� = �L��,k� + �T��,k� �12�

and then taking the imaginary part, Im ��� ,k�.
When the Fermi level lies exactly at the Dirac point, the

states below the point are all occupied while the states be-
yond it are all empty �see Fig. 1�a��. In this state, the chemi-
cal potential is usually defined as zero, �=0. In a previous
paper, we studied the Dirac fermion damping rate and found
that it behaves as Im ������1/2 at zero temperature, which is
a typical non-Fermi-liquid behavior. Once the fermion den-
sity increases starting from the Dirac point, the system de-
velops a finite chemical potential � �Fig. 1�b��. Now the
system has a finite but small Fermi surface. The density of
states of fermions at the Fermi level has a finite quantity.
Therefore, at finite �, the gauge field may lead to very dif-
ferent behaviors for the fermion damping rate.

In order to know how fermion damping rate varies with
�, we will explicitly calculate the fermion self-energy. To
this end, we first calculate the polarization functions
�00�i�m ,q� and �ii�i�m ,q�.

III. COMPUTATION OF POLARIZATION FUNCTIONS

The polarization functions contributed by the massless
Dirac fermions deserve careful exploration since they deter-
mine or are directly related to many important physical quan-
tities. For instance, the dynamical screening effect of collec-
tive particle-hole excitations on the gauge or Coulomb
interaction between Dirac fermions can only be studied by
the polarization functions. Physically, such effect describes
the damping of gauge boson in the many-body background
composed of massless Dirac fermions. In addition, according
to the Kubo formula in transport theory, various conductivi-
ties are all given by their corresponding current-current cor-
relation functions, which in form are analogous to the polar-
ization functions.
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In this section, we briefly outline the computational steps
and present the complete expressions for polarization func-
tions �00 and �� in the presence of finite chemical potential

at both zero and finite temperature. The analytical expres-
sions will be useful to any work that relies on the properties
of polarization functions of two-dimensional Dirac fermions.

A. Temporal component �00(� ,q ,T)

To calculate the temporal component of polarization function �00�i�m ,q�, we first introduce the spectral representation

G0�i�n,k� = − 	
−�

+� d�1

�

Im�G0��1,k��
i�n − �1

�13�

and then sum over the frequency, which yields

�00�i�m,q� = − Ne2	 d2k

�2��2Tr
	
−�

+� d�1

�
Im�G0��1,k��	

−�

+� d�2

�
Im�G0��2,k + q���nF��1� − nF��2�

�1 − �2 + i�m
. �14�

It is convenient to make the analytic continuation i�m→�+ i
 at this stage

1

�1 − �2 + i�n
→

1

�1 − �2 + � + i

= P

1

�1 − �2 + �
− i�
��1 − �2 + �� . �15�

The imaginary part of the retarded polarization function is

Im �00��,q� = N�e2	 d2k

�2��2Tr
	
−�

+� d�1

�
Im�G0��1,k��	

−�

+� d�2

�
Im�G0��2,k + q����nF��1� − nF��2��
��1 − �2 + �� .

�16�

Here the imaginary part of retarded fermion Green’s function is given by

Im�G0��,k�� = Im
 1

� + � − 
 · k + i

� = Im
 � + � + 
 · k

�� + ��2 − �k�2 + i sgn�� + ��
�
= − � sgn�� + ���� + � + 
 · k�
��� + ��2 − �k�2�

= − � sgn�� + ���� + � + 
 · k�
1

2�k�
�
�� + � + �k�� + 
�� + � − �k��� . �17�

After tedious computation, we finally have

Im �00��,q,T� = ���=�1
sgn���

Ne2

8�

�q�2


�2 − �q�2
	

−1

1

dx
1 − x2

�,1 −
1

1 + e�q�x+���−2��/2T� when ��� � �q�

��=�1
sgn���

Ne2

8�

�q�2


�q�2 − �2	
1

+�

dx
 
x2 − 1

1 + e�q�x−���−2��/2T −

x2 − 1

1 + e�q�x+���−2��/2T� when ��� � �q� .�
�18�

We now calculate the real part of temporal component of polarization function. The whole computation is much more
complicated than the imaginary part. From Eqs. �14� and �15�, we have
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Re �00��,q,T� = − Ne2P	 d2k

�2��2Tr
	
−�

+� d�1

�
Im�G0��1,k��	

−�

+� d�2

�
Im�G0��2,k + q���nF��1� − nF��2�

�1 − �2 + �

= − Ne2	 d2k

�2��2Tr
	
−�

+� d�1

�
Im�G0��1,k��nF��1�P	

−�

+� d�2

�

Im�G0��2,k + q��
�1 + � − �2

�
− Ne2	 d2k

�2��2Tr
	
−�

+� d�2

�
Im�G0��2,k + q��nF��2�P	

−�

+� d�1

�

Im�G0��1,k��
�2 − � − �1

� . �19�

Using the Kramers-Kronig relation

Re�G0��,k�� = − P	
−�

+� d��

�

Im�G0���,k��
� − ��

�20�

the above expression can now be converted to

Re �00��,q,T� = Ne2	 d2k

�2��2	
−�

+� d�1

�
nF��1�Tr�Im�G0��1,k��Re�G0��1 + �,k + q���

+ Ne2	 d2k

�2��2	
−�

+� d�1

�
nF��1�Tr�Im�G0��1,k + q��Re�G0��1 − �,k��� , �21�

where

Re G0��,k� = �� + � + 
 · k�P
1

�� + ��2 − �k�2
. �22�

From this equation, we obtain the following expression:

Re �00��,q,T� = −
Ne2

2�
	

0

+�

d�k�

+���=�1 �Ne2T ln�1 + e��/T�
2�

−
Ne2

8�

�q�2


�2 − �q�2
	

1

+�

dx
x2 − 1
 1

1 + e��q�x−����−2��/2T −
1

1 + e��q�x+����−2��/2T��
when ��� � �q� ,

���1 �Ne2T ln�1 + e��/T�
2�

+
Ne2

8�

�q�2


�q�2 − �2	
−1

1

dx
1 − x2

�,1 −
1

1 + e��q�x+����−2��/2T��
when ��� � �q� .

�
�23�

Notice there appears a divergent term

ISingular = −
Ne2

2�
	

0

+�

d�k� . �24�

To remove this divergence, here we employ the regulariza-
tion scheme that was proposed in Ref. 23. This scheme states
that the gauge field must remain massless so that it should
satisfy

����� → 0, �q� → 0,� = 0,T = 0� = 0. �25�

Now the polarization function can be redefined as

�����,q,T� − ����� → 0, �q� → 0,� = 0,T = 0� . �26�

After this regularization, the singular term can be simply
dropped from Re �00�� ,q ,T�.

B. Transverse component ��(� ,q ,T)

Proceeding as we have done in the above, we found that
the imaginary and real parts of �ii�� ,q ,T� have the expres-
sions

FATE OF NON-FERMI-LIQUID BEHAVIOR IN QED3… PHYSICAL REVIEW B 82, 075133 �2010�

075133-5



Im �ii��,q,T� =�
��=�1 �− sgn���

Ne2

8�

�q�2


�2 − �q�2
	

−1

1

dx
1 − x2

�,1 −
1

1 + e�q�x+���−2��/2T��
�− sgn���

Ne2

8�

�2 − �q�2	

−1

1

dx
1


1 − x2

�,1 −
1

1 + e�q�x+���−2��/2T�� when ��� � �q�

��=�1 �− sgn���
Ne2

8�

�q�2


�q�2 − �2	
1

+�

dx
 
x2 − 1

1 + e�q�x−���−2��/2T −

x2 − 1

1 + e�q�x+���−2��/2T��

�− sgn���
Ne2

8�

�q�2 − �2	

1

+�

dx
1


x2 − 1

 1

1 + e�q�x−���−2��/2T −
1

1 + e�q�x+���−2��/2T�� when ��� � �q� .
�
�27�

Re �ii��,q,T� =�
��=�1 �Ne2

8�

�q�2


�2 − �q�2
	

1

+�

dx
 
x2 − 1

1 + e��q�x−����−2��/2T −

x2 − 1

1 + e�q�x+���−2��/2T��
�−

Ne2

8�

�2 − �q�2	

1

+�

dx
1


x2 − 1

 1

1 + e��q�x−����−2��/2T −
1

1 + e�q�x+���−2��/2T�� when ��� � �q�

��=�1 �−
Ne2

8�

�q�2


�q�2 − �2	
−1

1

dx
1 − x2

�,1 −
1

1 + e��q�x+����−2��/2T��
�+

Ne2

8�

�q�2 − �2	

−1

1

dx
1


1 − x2

�,1 −
1

1 + e��q�x+����−2��/2T�� when ��� � �q� .
� �28�

According to Eq. �6�, the retarded transverse polarization function is decomposed as

����,q,T� = �ii��,q,T� +
�2

�q�2
�00��,q,T� , �29�

which can be written more explicitly as

Im ����,q,T� = Im �ii��,q,T� +
�2

�q�2
Im �00��,q,T� , �30�

Re ����,q,T� = Re �ii��,q,T� +
�2

�q�2
Re �00��,q,T� . �31�

Using the results presented above, it is easy to get that

Im ����,q,T� = �− ��=�1
sgn���

Ne2

8�

�2 − �q�2	

−1

1

dx
x2


1 − x2

�,1 −
1

1 + e�q�x+���−2��/2T� when ��� � �q�

− ��=�1
sgn���

Ne2

8�

�q�2 − �2	

1

+�

dx
x2


x2 − 1

 1

1 + e�q�x−���−2��/2T −
1

1 + e�q�x+���−2��/2T� when ��� � �q� .�
�32�

IV. FERMION DAMPING RATE AT ZERO TEMPERATURE

In this section, we calculate the fermion damping rate at zero temperature. We first consider the transverse contribution of
gauge field to fermion damping rate. To do this, we will substitute the transverse gauge propagator Eq. �5� to transverse
self-energy function Eq. �11�. Here, it is convenient to introduce the following spectral representations:

G0�i�n + i�m,k + q� = − P	
−�

+� d�1

�

Im�G0��1,k + q��
i�n + i�m − �1

, �34�

1

�q�2 + �m
2 + ���i�m, �q��

= − P	
−�

+� d�2

�

1

i�m − �2
Im
 1

�q�2 − �2
2 − i sgn��2�
 + ����2, �q��� . �35�

After carrying out the summation over �m, we can get
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�T�i�n,k� = − e21

2
Tr
1 ·	 d2q

�2��2
i	
−�

+� d�1

�
Im�G0��1,k + q��
 j�
ij − qiqj/�q�2�	

−�

+� d�2

�

� Im
 1

�q�2 − �2
2 − i sgn��2�
 + ����2, �q���nB��2� + nF��1�

i�n + �2 − �1
� . �36�

After analytic continuation i�n→�+ i
, we have

1

i�n + �2 − �1
→

1

� + �2 − �1 + i

= P

1

� + �2 − �1
− i�
�� + �2 − �1� �37�

and the imaginary part of fermion self-energy becomes

Im �T��,k,T� = − e2	 d2q

�2��2 Im
 1

�q�2 − ��k + q� − � − ��2 − i
 sgn��k + q� − � − �� + ����k + q� − � − �, �q���
��nB��k + q� − � − �� + nF��k + q� − ��� , �38�

where Eq. �17� was used. We now introduce a new variable k�=k+q and then have

Im �T��,k,T� = −
e2

4�2	
0

+�

d�k���k��	
0

2�

d� Im
 1

�k� − k�2 − ��k�� − � − ��2 − i
 sgn��k�� − � − �� + ����k�� − � − �, �k� − k���
��nB��k�� − � − �� + nF��k�� − ��� , �39�

where � is the angle between k and k�. Without lose of generality, we suppose that ��0.
Now we focus on the zero temperature limit and consider the case at finite temperature in the next section. At T=0, the

contribution function reduces to

nB��k�� − � − �� + nF��k�� − �� = − ���k�� − ����� + � − �k��� �40�

so the transverse damping rate reduces to

Im �T��,k� =
e2

4�2	
�

�+�

d�k���k��	
0

2�

d� Im
 1

�k� − k�2 − ��k�� − � − ��2 + i
 + ����k�� − � − �, �k� − k��� . �41�

In general, there are two kinds of approximations: on-shell approximation and fixed-momentum approximation. We now
consider the on-shell approximation

� = �k = �k − � = �k� − � �42�

and convert the damping rate to

Im �T��k� =
e2

4�2	
�

�+�k

d�k���k��	
0

2�

d� Im
 1

�k� − k�2 − ��k�� − �k��2 + i
 + ����k�� − �k�, �k� − k��� . �43�

The fixed momentum approximation will be discussed later.
To proceed, we will substitute the analytical expression of

polarization function ���� , �q�� obtained in the last section
into this formula. At the T=0 limit, the integration over pa-
rameter x in Eqs. �32� and �33� can be analytically carried
out. The expression for ���� , �q�� at T=0 is presented in the
Appendix. Such expression is clearly too complicated to be
used. In order to get analytical results for fermion damping
rate, it is necessary to make proper approximations to
���� , �q��.

In the present problem, it is important to observe that the
dominant contribution of the above integral comes form the
region ���� �q� and �q��� in ���� , �q�� so that we can sim-
ply the polarization functions by restricting the energy-

momentum to this region. This approximation method was
used by many authors previously.1,4,5,7,27 In this region, the
polarization function can be significantly simplified and is
given by

Re ����, �q�� =
Ne2�

2�

�2

�q�2
, �44�

Im ����, �q�� � − sgn���
Ne2�

2�

���
�q�

. �45�

If we take the static limit, �→0, both the real and imaginary
parts of the transverse polarization function vanishes,
���� , �q��→0. This implies that the transverse gauge field
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remains massless even after including the dynamical screen-
ing effect due to particle-hole excitations. This property is
robust against higher order corrections and indeed a conse-
quence of gauge invariance. However, the chemical potential
� does affect the transverse gauge interaction between Dirac
fermions and thus should affect the fermion damping rate.
Substituting the above expressions for ���� , �q�� into Eq.
�43�, we finally get

Im �T��k� � C����k
2/3, �46�

where

C��� = −

3 2e4/3

8
3�2/3N1/3�1/3 . �47�

Apparently, this damping rate displays non-Fermi-liquid be-
havior at zero temperature.

We now consider the longitudinal contribution to fermion
damping rate. Starting from Eqs. �4� and �10� and then using
the same steps presented in the above, we write the longitu-
dinal damping rate as

Im �L��k� = −
e2

4�2	
�

�+�k

d�k���k��	
0

2�

d�

� Im
 1

�k� − k�2 + �00��k�� − �k�, �k� − k��� .

�48�

As ���� , �q��, the polarization function �00�� , �q�� is also
too complicated even at T=0 �see Appendix�. In the region
���� �q� and �q���, we have the following simplified ex-
pressions for �00�� , �q��:

Re �00��, �q�� =
Ne2�

2�
, �49�

Im �00��, �q�� � sgn���
Ne2�

2�

���
�q�

. �50�

In the static limit, �→0, the imaginary part Im �00�� , �q��
vanishes but the real part Re �00�� , �q�� is a constant. There-
fore, from Eq. �4�, the temporal component of gauge field
propagator is found to be

D00�� = 0,q� =
1

�q�2 +
Ne2�

2�

�51�

in the static limit. Comparing with the transverse component
of gauge field propagator defined by Eq. �5�, �44�, and �45�,
the temporal component has a static screening and chemical
potential � defines the Debye screening length. It reflects the
effect of particle-hole excitations on the initially long-range
temporal gauge interaction. This is the key difference be-
tween Dirac fermion systems with zero and finite chemical
potential. The short-range temporal gauge interaction is ex-
pected to produce only normal Fermi-liquid behavior. Sub-
stituting them into Eq. �48�, it is easy to get

Im �L��k� �
1

2�N�
�k

2 ln� �k

�
� . �52�

This expression vanishes faster than �k as �k→0 and thus is
a normal Fermi-liquid behavior. As shown in,20 the perturba-
tive result of zero-temperature fermion damping rate is di-
vergent at �=0. The finite chemical potential eliminates the
divergence and at the same time leads to normal Fermi-liquid
behavior.

The total fermion damping rate should be

Im ���k� = Im �T��k� + Im �L��k� � C����k
2/3. �53�

This result is obtained using the on-shell approximation. We
can alternatively use the fixed momentum approximation.
The momentum can be chosen as the Fermi momentum so at
zero temperature the fermion damping rate depends only on
the energy �. After explicit computation, we found that

Im �T��, �k� = �� � C����2/3, �54�

Im �L��, �k� = �� �
1

2�N�
�2 ln� �

�
� . �55�

So the total damping rate is

Im ���, �k� = �� � C����2/3. �56�

This has the same form as that obtained in the on-shell
approximation with �k being replaced by �. There are three
important features of this damping rate. First, when we take
the �→0 limit, this result does not reduce to the ��1/2 result
obtained at �=0. If we use the exponent z appearing in the
energy dependence �z of damping rate to characterize the
ground state of the fermion-gauge system, then there is a
sudden change of ground state once � departs from zero. It
appears that the Dirac fermion systems exhibit distinct be-
haviors at zero and finite �. This difference arises from the
difference in topology of Fermi surface: at finite � the sys-
tem has a finite one-dimensional Fermi surface but at �=0
the Fermi surface shrinks to a zero-dimensional point. Sec-
ond, at finite �, as � grows from certain small value, the
energy dependence of fermion damping rate does not
change. Third, at any fixed energy � the fermion damping
rate is proportional to �−1/3 so the Dirac fermions become
more well-defined as chemical potential grows.

The fermion damping rate ��2/3 seems to be a universal
behavior. It has the same energy dependence as that in two-
dimensional nonrelativistic fermion-gauge systems with a
large Fermi surface.4–7 Such energy dependence also appears
in some two-dimensional electron systems where fermions
interact strongly with fluctuating ferromagnetic order
parameter24 or fluctuating nematic order,25,26 as well as in
two-dimensional electron systems near a Pomeranchuk
instability.27

Using the Kramers-Kronig relation, we get the real part of
fermion self-energy
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Re ���� � 
3C���sgn����2/3. �57�

It has the same energy dependence as the imaginary part. It is
easy to show that the renormalization factor Z=0, which is
the characteristic of a non-Fermi liquid.22

It is also interesting to study the effective QED3 theory
without Maxwell term for the gauge field.15,16 Now the
propagator for the gauge field in Matsubara formalism has
the form

D00�i�m,q� =
1

�00�i�m,q�
, �58�

Dij�i�m,q� = �
ij −
qiqj

q2 � 1

���i�m,q�
. �59�

Using this propagator, we found that the longitudinal and
transverse fermion damping rates are

Im �T��k� � −
�

�N
	

0

�k/�

d
�
1


�
, �60�

Im �L��k� �
1

2�N�
�k

2 ln� �k

�
� �61�

in the on-shell approximation. In the fixed momentum ap-
proximation, we have

Im �T��, �k� = �� � −
�

�N
	

0

�/�

d
�
1


�
, �62�

Im �L��, �k� = �� �
1

2�N�
�2 ln� �

�
� . �63�

Clearly, in both the on-shell and fixed momentum approxi-
mations, the total fermion damping rate is divergent. Note
that a similar divergence also exists at zero chemical
potential.20 It seems that such divergences are directly related
to the absence of Maxwell term for the gauge field.

V. FERMION DAMPING RATE AT FINITE TEMPERATURE

We now consider the fermion damping rate at finite tem-
perature. The polarization function at finite T should be used
when calculating the fermion self-energy. Here it will be
convenient to adopt an important approximation. At low tem-
perature T��, we can still use the polarization functions
obtained at zero temperature. This approximation was previ-
ously employed in Refs. 3 and 4. In the limit T��, we can
simply choose the upper boundary value of �k�� as �+T. The
reason is that the fermions are primarily scattered into states
in the outside of the Fermi surface because most of the states
on �and below� the Fermi surface are already occupied by
other fermions at low temperature. The lower limit of �k��
can be assumed to be �. Moreover, at finite temperature, the
occupation number functions can be well simplified as

nB��k�� − �k�� + nF��k�� − �� �
T

�k�� − �k�
. �64�

After straightforward computation, we finally have

Im �T�T� � −

3 2e4/3T

12
3�2/3N1/3�2/3	
0

T/�

d
�
1


�4/3 , �65�

which is divergent. It is interesting to note that this diver-
gence is very similar to that appearing in the nonrelativistic
fermion-gauge problem �see paper of Lee and Nagaosa in
Ref. 4�. The longitudinal contribution to fermion damping
rate at finite temperature is found to behave as

Im �L�T� �
T2

�
ln� T

�
� , �66�

which is the typical behavior of normal Fermi liquid in two
spatial dimensions. Apparently, the total fermion damping
rate is divergent.

VI. SUMMARY AND DISCUSSION

In summary, we studied the effect of finite chemical po-
tential � on the damping rate of massless Dirac fermions in
QED3. At zero temperature, the total damping rate behaves
as Im ��� ,����−1/3�2/3, which vanishes slower than � does
near the Fermi surface. This non-Fermi-liquid behavior is
primarily generated by the long-range transverse gauge inter-
action while the longitudinal gauge interaction becomes
short ranged and thus only leads to normal Fermi-liquid be-
havior. It is important to note that the expression of Im ����
at �=0 cannot be obtained by simply taking the �→0 limit
from Im ��� ,�� at finite �. This indicates that the fermion
damping rate displays different � dependence at zero and
finite chemical potential although Fermi-liquid theory breaks
down in both cases.

At high fermion density, the Fermi surface becomes very
large. Now the massless Dirac fermion with linear energy
spectrum is no longer a good description for the low-energy
excitations. The system is then described by the nonrelativ-
istic fermion-gauge theory.4–7 Therefore, the results obtained
in this paper are valid only when � is not too large.

We have to admit that it is unclear how to get a physically
meaningful fermion damping rate at finite temperature and
finite chemical potential. When T��, although the longitu-
dinal component of damping rate has a normal Fermi-liquid
result, the transverse component Im �T�T� is divergent. At
present, there seems to be no efficient way to cure such
divergence.4,28 In principle, it is possible to get a divergence-
free damping rate by studying the self-consistent, Eliashberg-
type, equations of fermion self-energy function and polariza-
tion functions at finite temperature, as we have done
previously.20 However, unlike in the case of zero chemical
potential,20 we found it difficult to obtain satisfactory results
from the corresponding Eliashberg equations at finite chemi-
cal potential. These problems surely deserve more thorough
investigations in the future.

Finally, we also calculated the fermion damping rate when
the QED3 action has no Maxwell term for the gauge field. A
divergence appears once the Maxwell term is dropped. This
divergence has different origin with that appearing in the
damping rate at finite temperature and finite chemical poten-
tial, and arises due to the absence of Maxwell term. Its ap-
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pearance may not be surprising since we have already met it
when studying the fermion damping rate at zero chemical
potential.20 Unfortunately, we are not aware of any available
method to eliminate the divergence brought by the absence
of Maxwell term at both zero and finite chemical potentials.
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APPENDIX: POLARIZATION FUNCTION AT T=0

When calculating the fermion damping rate at zero tem-
perature T=0 in Sec. IV, it is necessary to first know the
temporal and transverse component of vacuum polarization
functions. At T=0, the integration over parameter x can be
carried out analytically with the results being presented be-
low. Here the chemical potential can be taken to be positive:
��0.

1. Expression for Im �00(� , �q�)

We first present the expressions for the region ���� �q�.
For 0���

���−�q�
2

Im �00��, �q�� = sgn���
Ne2

16

�q�2


�2 − �q�2
. �A1�

For ���−�q�
2 ���

���+�q�
2

Im �00��, �q�� = sgn���
Ne2

16�

�q�2


�2 − �q�2

�
�

2
− A1�2� − ���

�q� �� , �A2�

where A1�y�=y
1−y2+arcsin y. For ��
���+�q�

2

Im �00��, �q�� = 0. �A3�

We then present the expressions for the region ���� �q�.
For 0���

�q�−���
2

Im �00��, �q�� = 0. �A4�

For �q�−���
2 ���

�q�+���
2

Im �00��, �q�� = sgn���
Ne2

16�

�q�2


�q�2 − �2
B1�2� + ���

�q� � ,

�A5�

where B1�y�=y
y2−1−ln�y+
y2−1�. For ��
�q�+���

2

Im �00��, �q�� = sgn���
Ne2

16�

�q�2


�q�2 − �2

�
B1�2� + ���
�q� � − B1�2� − ���

�q� �� .

�A6�

2. Expression for Re �00(� , �q�)

We first present the expressions for the region ���� �q�.
For 0���

���−�q�
2

Re �00��, �q�� =
Ne2�

2�
−

Ne2

16�

�q�2


�2 − �q�2

�
B1� ��� + 2�

�q� � − B1� ��� − 2�

�q� �� .

�A7�

For ���−�q�
2 ���

���+�q�
2

Re �00��, �q�� =
Ne2�

2�
−

Ne2

16�

�q�2


�2 − �q�2
B1� ��� + 2�

�q� � .

�A8�

For ��
���+�q�

2

Re �00��, �q�� =
Ne2�

2�
−

Ne2

16�

�q�2


�2 − �q�2

�
B1�2� + ���
�q� � − B1�2� − ���

�q� �� .

�A9�

We then present the expressions for the region ���� �q�.
For 0���

�q�−���
2

Re �00��, �q�� =
Ne2�

2�
+

Ne2

16�

�q�2


�q�2 − �2

�
� − A1�2� + ���
�q� � − A1�2� − ���

�q� �� .

�A10�

For �q�−���
2 ���

�q�+���
2

Re �00��, �q�� =
Ne2�

2�
+

Ne2

16�

�q�2


�q�2 − �2

�
�

2
− A1�2� − ���

�q� �� . �A11�

For ��
�q�+���

2

Re �00��, �q�� =
Ne2�

2�
. �A12�

3. Expression for Im ��(� , �q�)

We first present the expressions for the region ���� �q�.
For 0���

���−�q�
2

Im ����, �q�� = − sgn���
Ne2

16

�2 − �q�2. �A13�
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For ���−�q�
2 ���

���+�q�
2

Im ����, �q�� = − sgn���
Ne2

16�

�2 − �q�2

�
�

2
− A2�2� − ���

�q� �� , �A14�

where A2�y�=−y
1−y2+arcsin y. For ��
���+�q�

2

Im ����, �q�� = 0. �A15�

We then present the expressions for the region ���� �q�.
For 0���

�q�−���
2

Im ����, �q�� = 0. �A16�

For �q�−���
2 ���

�q�+���
2

Im ����, �q�� = − sgn���
Ne2

16�

�q�2 − �2B2�2� + ���

�q� � ,

�A17�

where B2�y�=y
y2−1+ln�y+
y2−1�. For ��
�q�+���

2

Im ����, �q�� = − sgn���
Ne2

16�

�q�2 − �2

�
B2�2� + ���
�q� � − B2�2� − ���

�q� �� .

�A18�

4. Expression for Re ��(� , �q�)

We first present the expressions for the region ���� �q�.
For 0���

���−�q�
2

Re ����, �q�� =
Ne2�

2�

�2

�q�2
−

Ne2

16�

�2 − �q�2

� 
B2� ��� + 2�

�q� � − B2� ��� − 2�

�q� �� .

�A19�

For ���−�q�
2 ���

���+�q�
2

Re ����, �q�� =
Ne2�

2�

�2

�q�2
−

Ne2

16�

�2 − �q�2

� 
B2� ��� + 2�

�q� �� . �A20�

For ��
���+�q�

2

Re ����, �q�� =
Ne2�

2�

�2

�q�2
−

Ne2

16�

�2 − �q�2

� 
B2�2� + ���
�q� � − B2�2� − ���

�q� �� .

�A21�

We then present the expressions for the region ���� �q�.
For 0���

�q�−���
2

Re ����, �q�� =
Ne2�

2�

�2

�q�2
+

Ne2

16�

�q�2 − �2

�
� − A2�2� + ���
�q� � − A2�2� − ���

�q� �� .

�A22�

For �q�−���
2 ���

�q�+���
2

Re ����, �q�� =
Ne2�

2�

�2

�q�2
+

Ne2

16�

�q�2 − �2

�
�

2
− A2�2� − ���

�q� �� . �A23�

For ��
�q�+���

2

Re ����, �q�� =
Ne2�

2�

�2

�q�2
. �A24�
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